
Ingeniare. Revista chilena de ingeniería, (2023) 31:29

Analysis and comparison of deep learning models
for user stories identification

Análisis y comparación de modelos de aprendizaje profundo
para la identificación de historias de usuario

	 Francisco Javier Peña Veitía1	 https://orcid.org/0000-0002-0837-2285
	 María Luciana Roldán1	 https://orcid.org/0000-0002-4786-5592
	 María Marcela Vegetti1	 https://orcid.org/0000-0003-4016-1717

Recibido 01 de octubre de 2021, aceptado 03 de noviembre de 2023
Received: October 01, 2021   Accepted: November 03, 2023

ABSTRACT

Nowadays, most software companies have adopted agile development methodologies, which suggest the
capture of requirements through user stories. Issues Management Systems allow development teams to
manage user stories and other issues, such as errors, change requests, and others. Although these systems
provide features for categorizing or labeling issue types, the user often needs to include or specify this
information correctly. A poor issue categorization causes many user stories to end up buried in a large
volume of data, making it difficult to identify them. This article presents and compares three neural
network models to classify issues as User Stories. As the ultimate goal of this research is to improve
the quality of the software development project documentation, the comparison is practical to select a
model to be embedded in an IMS tool for automatically categorizing issues. The compared models are
a BRNN-LSTM model, an Elmo-based model, and a BERT-based model. It applied the CRISP-MD
methodology to train, validate, and test the three proposed neural network models. Then, a comparison
was performed regarding their accuracy and performance. As a result, the article shows that the BERT-
based model is the one that best fits the problem posed, managing to classify the issues as user stories
with an accuracy of approximately 97%. This model can analyze the text syntactically and semantically
with the best accuracy and performance.

Keywords: Natural language processing, machine learning, recurrent neural networks, software engineering,
user story.

RESUMEN

Hoy en día, la mayoría de las empresas de software emplean metodologías de desarrollo ágiles, las
cuales recomiendan la captura de requisitos a través de historias de usuario. Tanto las historias de
usuario, como otros tipos de incidencias (errores, solicitudes de cambio, etc.) son gestionadas mediante
Sistemas de Seguimiento de Incidencias (SSI). Aunque estos sistemas poseen características para el
etiquetado o categorización de tipos de incidencias, esta información suele ser omitida o especificada
incorrectamente por el usuario. Una mala categorización de las incidencias hace que muchas historias
de usuario se pierdan en grandes volúmenes de datos, dificultándose así su posterior recuperación.

1	 INGAR - Instituto de Desarrollo y Diseño (CONICET-UTN), Ciudad de Santa Fe, Argentina.
	 E-mail: fpveitia@santafe-conicet.gov.ar; lroldan@santafe-conicet.gov.ar; mvegetti@santafe-conicet.gov.ar
*	 Autor de correspondencia: fpveitia@santafe-conicet.gov.ar

Ingeniare. Revista chilena de ingeniería, (2023) 31:29

2

INTRODUCTION

Today, most software development companies
have adopted agile development methodologies
such as SCRUM, Kanban, and XP. Most of these
agile methodologies recommend the capture of
requirements through user stories [1]. In this context,
a user story is a short description of what some part
of the software should do from the perspective of
some stakeholder interested in the new feature that the
software should provide or possess. Although, over
the years, several structures have been proposed for
writing user stories, most are now written in a strict
and compact way that captures who it is for, what is
expected as a system response, and optionally why
it is relevant following the structure: “As a (type
of user), I want (goal), so that (some reason)” [1].

In agile software development, requirements in
the form of user stories are frequently managed
in an Issue Management System (IMS). An Issue
Management System is a computer application
designed to help ensure software quality and
support to programmers and other stakeholders
in the tracking process. These systems include
Jira, OpenProject, and Redmine, among others.
An IMS can be configured as an issue tracker,
a bug tracker, or a project management tool.
Specifically, in agile software development, it is
common to employ an IMS as a supporting tool for
keeping track of the open development issues in a
software project [2].The term “issue” is attributed
to the unit of work improve a computer system.
Therefore, this term can describe most of the kinds
of tasks that are needed to track when developing
a computer system [2].

Este artículo compara tres modelos de redes neuronales para clasificar incidencias como Historias de
Usuario. Siendo el objetivo final de esta investigación la mejora de calidad en la documentación de
los proyectos de desarrollo de software, la comparación realizada es útil para la selección del mejor
modelo a incorporar en una herramienta SSI para la categorización automática de las incidencias. Los
modelos comparados son un modelo BRNN-LSTM, un modelo basado en Elmo y un modelo basado en
BERT. Se aplicó la metodología CRISP-MD para entrenar, validar y probar los tres modelos de redes
neuronales propuestos. Como resultado, el artículo muestra que el modelo basado en BERT es el que
mejor se ajusta al problema planteado, consiguiendo clasificar los problemas como historias de usuario
con una precisión de aproximadamente el 97%. Además, dicho modelo es capaz de analizar el texto tanto
sintáctica como semánticamente con la mejor precisión y rendimiento.

Palabras clave: Procesamiento del lenguaje natural, aprendizaje automático, redes neuronales recurrentes,
ingeniería de software, historias de usuario.

IMS systems allow development teams to organize
a collection of user stories in meaningful fragments
like epics, themes and sprints. In addition, these
systems manage other issues types, such as errors,
change requests, and others. Although these systems
allow the user to categorize or label an issue
explicitly, selecting the right category for a new
issue is up to the person creating it. That means that
this information needs to be included or assigned
correctly. Poorly categorizing issues causes many
user stories to be buried in a large volume of data,
making it difficult to identify them.

An analysis was performed on a dataset containing
more than 1.5 million issues to support this claim [3].
Among other data, for each issue, the issue type and
a summary description are stored in the dataset for
each case. Using different kinds of string-matching
patterns, we have found that a high percentage of
issues have an incorrect type assigned, or their
summary information needs to be correted. Figure 1
and Figure 2 illustrate the results of two searches
performed on the dataset. Figure 1 shows 10 of the
10829 records obtained after filtering all the issues
using “story” as the issue type. In Figure 1 it can
be seen that although the issues were classified as
user stories, only the labeled with ID 1088 comply
with the compact format of a user story mentioned
above. Also, in Figure 1, it can be seen that many
issues that cannot be identified as requirements
(issues labeled as 0,1,3, 1089, or 1099, for example).

We performed a second search, looking for the string
“as a” in the “Summary” field of the issues. Figure 2
shows the records obtained, whose IDs range from
0 to 3058. This figure, shows that some issues were

Peña, Roldán, Vegetti: Analysis and comparison of deep learning models for user stories identification

3

not classified as user stories, although they were
expressed using the compact format of a user story
(se, for example, issues labeled as 3, and 4).

This preliminary analysis shows that while IMSs
are helpful tools to support the management of
software development projects, users can assign
the wrong issue type or label to an issue or omit
that information. Thus, it is necessary to have an

efficient approach to classifying issues, which
can be integrated into an IMS to provide it with
the capabilities to identify the type of issue in an
automated way.

Moreover, the correct identification of user stories
interests’ software engineering for several reasons.
For the members of a software project team that
employ an IMS, having a supporting tool for

Figure 1.	 Issues obtained when filtering with the search pattern “Story”
applied to the Issue Type field.

Figure 2.	 Issues obtained when filtering with the search pattern
“as a” applied to the Summary field.

Ingeniare. Revista chilena de ingeniería, (2023) 31:29

4

automatically categorizing of issues as user stories
can save time and error occurrences, improving the
whole quality of the project documentation.

For organizations that have multiple related projects, it
is important to have an integrated requirements base.
Requirements engineering activities are no longer
associated with an individual system development
process and, thus, an individual project [3]. In
contrast, it is viewed as an independent activity
executed across multiple projects and product
developments. Therefore, an approach to identify
the issues that constitute “user stories” in an IMS
repository is helpful to retrieve them and feed an
integrated requirements base, regardless of whether
they were categorized as “user stories.”

A recent research trend is the application of
computational linguistic techniques to user
stories to solve classic challenges in requirements
engineering, such as the formulation of high-quality
requirements or the creation of better models of
system functionalities [2]. However, the success of
these studies strongly depends on the correctness
of the categories or labels assigned to the issues in
an extensive IMS repository. Therefore, correctly
identifying user stories is a starting point for applying
these approaches.

This work presents three neural network models
with different architectures to classify issues as User
Stories. Then, we ran an experiment to evaluate the
performance of each model.

This paper is organized as follows. The first section
presents some related works. After that, some
theoretical concepts of the methods and materials
used to better understand this work are introduced.
Then, details about the datasets generated and used
are discussed, and the implemented models are
presented. Subsequently, the main results obtained
by testing the different models are described, and
a comparison is offered that considers various
aspects such as the accuracy of the models, syntactic
analysis, and semantic analysis capability. Finally,
the conclusions are drawn.

Related works
One of the features provided by most IMS is to
assign a category or a set of labels to the generated
issues with the aim, at least in theory, to facilitate

their management and retrieval. Several authors have
studied the use of labels to categorize issues in an
IMS. In [4], the authors analyzed a population of
more than three million GitHub projects and gave
some insights on how labels are used in them. Their
results reveal that, even if the label mechanism is
scarcely used, using labels favors the resolution of
issues. They also conclude that not all projects use
labels similarly (e.g., for some, labels are only a way
to prioritize the project, while others use them to
signal their temporal evolution as they move along
in the development workflow).

In a study conducted on closed issue reports of
three open-source software systems from Jira, it
has been observed that the label given to the issue
reports about bugs or improvement is incorrect [5].
The authors manually classified more than 7000
closed issue reports from five popular open-source
software systems to analyze the accuracy of already
labeled reports. Their findings state that 33.8% of
closed issue reports were misclassified.

The authors in [6] manually classified a dataset
and applied machine learning algorithms for bug
classification. In [7], an automated approach is
proposed to label an issue either as a bug or other
request based on fuzzy set theory. The labeling of
bug reports is done in three phases. First, text from
the bug reports is preprocessed. Second, the Fuzzy
technique is applied, and third, the labeling is done
using scores obtained after fuzzification. In [8], the
authors selected seven projects in GitHub and built
classification models based on issue information,
text descriptions, and comments to improve the
maintenance tasks for development teams. Text
information was preprocessed with text data mining
techniques and information retrieval. Then, they
evaluated the performance of classifiers with several
metrics. They conclude that very suitable classifiers
may be obtained to label the issues or suggest the
most suitable candidate labels.

These contributions employed datasets obtained
from repositories of IMS configured for bug
tracking and not for project management. For that
reason, the focus of these works has been on the
correct classification/labeling of defects or bugs.
However, our work employs datasets obtained from
IMS repositories used for project management
and software development, and we focused on

Peña, Roldán, Vegetti: Analysis and comparison of deep learning models for user stories identification

5

the identification of issues related to requirements
definition, such as “user stories”.

In the last years, a research trend has emerged
regarding applying computational linguistic
techniques to user stories to solve classic challenges
in requirements engineering, such as the formulation
of high-quality requirements or the creation of better
models of system functionalities [9]. A research
line is the extraction of conceptual models from
natural language (NL) requirements, which can
help to identify dependencies, redundancies, and
conflicts between requirements from lengthy textual
specifications. To extract meaningful models from
requirements expressed in NL, researchers have
been proposing heuristic rules for the identification
of entities and relationships whenever the text
matches particular patterns of the given language
(usually English). For example, in [9], is proposed
an automated approach based on natural language
processing that extracts conceptual models from
user story requirements. In another work [10],
the authors proposed an approach to generate i*
models from user stories. In [11], contributions
are made toward mapping user stories and use
case models. Also, in [12], user stories are used
to extract quality attributes for early architecture
decision-making. A common denominator of all
these proposals is that they require user stories as
input, so mislabeled user stories harm the results
of such studies. Consequently, to anticipate better
results from these user story studies, an approach
that correctly identifies subjects as either “user
stories” or “non-user stories” is required.

Background
In this section, the theoretical concepts on which this
work is based are exposed. We describe the concepts
and models used in this paper, such as User Stories,
Recurrent Neural Networks, Bidirectional Long
Short-Term Memory Recurrent Neural Networks,
and Natural Language Processing with Neural
Networks, among others.

User stories
Outside the world of software, a user story could be
referred to as a customer’s testimonial or narrative;
however, it has a whole different meaning for software
professionals. In terms of software development, a
user story is a short description of something or a
piece of software it is supposed to do, told from the

perspective of the person who desires the new feature.
Although going back to its beginnings, user stories
were proposed as unstructured text but with some
size restrictions [1], nowadays, it follows a compact
template for writing them. The template captures
who it is, its expectations of the system function,
and, optionally, why it is significant [13]. Although
many different templates exist, 70% of practitioners
use the template: “As a (type of user), I want (goal),
[so that (some reason)]” [1]. Next, two examples of
user stories using such a template are introduced.

•	 Example 1: As a visitor, I want to purchase an
event ticket.

•	 Example 2: As an event organizer, I want to
search for new events by favorited organizers,
So that I know of events first.

Natural language processing with neural networks
Natural Language Processing (NPL) is a subfield
of linguistic, computer, information engineering,
and artificial intelligence sciences dedicated to
interacting with computer equipment and human
natural language, particularly how computer
programs process and analyze large amounts of
information. The problems often addressed with these
techniques are speech recognition, understanding
natural language such as sentiment analysis, text
generation, automatic text summarization, and
automatic entity recognition[14]. Although there
exist several natural language processing techniques,
in recent years, there has been a significant boom in
the use of Deep Learning models [14] because of
their ability to capture the syntactic and semantic
information of words in large unlabeled bodies
of text. Word vectors (word embeddings) are a
standard component found in current NLP system
architectures [14]. Word embeddings are vectors
of real numbers representing terms correlating
relative similarities with semantic similarities [15],
generally learned by neural networks. They can
represent the context of the word and can provide
information about relations with other words. Hence,
the meaning or semantic context of words can be
predicted accurately as they can capture syntactic
and semantic information about the words [16].
Following this trend, there are analyzed and used
popular models at the moment of this work.

Recurrent Neural Network (RNN) architectures have
become a typical and famous neural network model

Ingeniare. Revista chilena de ingeniería, (2023) 31:29

6

because of their capabilities to process sequential
inputs and learn its dependencies [17], proving to
be very helpful in NLP tasks. An RNN is a neural
network where the connections between neurons
form a directed graph, making a temporal sequence
through Xt time steps, feeding each hidden state
Ht to the next time step, as shown in Figure 3. The
network thus has a dynamic temporal behavior.
Unlike common networks, RNNs can use an
internal state (memory state) to process sequences
of inputs. However, they have problems with long-
term dependencies due to gradient vanishing [17].

Otherwise, long short-term memory (LSTM) is
a recurrent neural network architecture type that
avoids the problem of gradient vanishing. LSTM is
augmented by recurrent “forgetting” gates, preventing
the backward propagation error from vanishing or
exploding. In this type of network errors can go
backward through a virtually unlimited number
of layers unfolded in space. As shown in Figure 4,
the internal memory cell Ct is controlled by a set
of gate networks: a forget gate network ft an input
gate network it, and an output gate network ot. The

forget gate network controls how much information
of the internal cell Ct should be passed into the next
time step. The input gate network is used to scale
the input block ut to the internal cell. Consequently,
LSTM can learn tasks that require memories of
events that occurred thousands of times in previous
training steps, thus making it capable of handling
long-term dependencies [17].

On the other hand, Bi-directional Recurrent
Neuronal Networks (BRNN) have a specific
structure. The state neurons of a regular RNN are
split into a part that is responsible for the positive
time direction (forward states) and a part for the
negative time direction (backward states), as shown
in Figure 5. These outputs of two types of states
are not necessarily connected to inputs in the
opposite states [18]. Using time directions in the
same network, input information in the past (t-1
in Figure 5) and the future (t+1 in Figure 5) of the
currently evaluated time frame (t) can be used to
minimize the objective function without the need
for delays, unlike common RNN that require these
“delays” to include future information. Using the
LSTM and BRNN models, the model can handle
long-term dependencies and analyze the whole
sentence forward and backward [19].

Commonly, nowadays, different NLP tasks entail a
great effort in terms of time and computing power
consumption, so as an alternative to creating a
model from scratch or too general, the transfer
learning technology has emerged [20]. Transfer
Learning (TL) is a machine learning method with the
perspective of providing a better and faster solution
with less effort for collecting the needed training
information and reusing it in another similar model

Source: [17]

Figure 3.	 Recurrent Neural Network.

Source: [17]

Figure 4. Schematic of the LSTM.

Source: [17]

Figure 5.	 General structure of the bidirectional
recurrent neural network (BRNN) shown
unfolded in time for three-time steps.

Peña, Roldán, Vegetti: Analysis and comparison of deep learning models for user stories identification

7

[20]. In [20], it is defined as: “Given a Ds domain
and a source Ts learning task, and a Dt domain and
target Tt learning task, the TL aims to enhance the
learning of the target predictive function f(x) in Dt
using the knowledge in Ds and Ts, where Ds ≠ Dt,
or Ts ≠Tt.” Word embeddings are a good example
of transfer learning since neural networks generally
learn them in a domain for a learning task, and
these learned word embeddings can be applied in
a different domain for other learning tasks. Hence,
those vectors of real numbers are transferred from
one model to another.

Word representations, such as Word Embeddings, are
a crucial component in many neural language models
[21]. ELMo (Embeddings from Language Models)
incorporates a form of deep word representation
based on a feature-based approach, where each token
is assigned a representation that is a function of the
entire input sequence [21]. The vectors derived from
a trained LSTM network with a pair of linguistic
models are used in an extended text corpus. These
representations are a function of all the layers of a
Bidirectional Linguistic Model (biLM) [21]. ELMo
looks at the entire sentence before assigning each
word in its embedding. It uses a bi-directional LSTM
trained on a specific task to create contextual word
embedding. The ELMo LSTM, once trained on a
massive dataset, could be used as a constituent in
other NLP models aimed at language modeling.
In [22], an implementation of a module with this
architecture and an application trained in 1 billion
words is presented. This module returns as output
a set of fixed embeddings for each LSTM layer,
the learned aggregation composed of 3 layers, and
a mean-pooled vector representation of the input.

There are two strategies for applying pre-training
in linguistic models: the characteristics-based
approach and the parameter adjustment approach
[23]. Feature-based models such as ELMo [21] use
architectures that include pre-trained representations
as additional features. On the other hand, models
that use parameter resetting introduce parameters
to specific tasks, trying to simplify and adjust
all the pre-trained parameters. However, current
techniques based on the parameter-matching
approach use unidirectional linguistic models [23].
BERT (Bidirectional Encoder Representations from
Transformers) [23] alleviates this problem using a
masked linguistic model. The linguistic model masks

some of the input tokens and aims to predict the
original id of the vocabulary by linking the contexts
from the right and left; hence it is bidirectional.

BERT uses a masked language modeling objective
to pre-train the transformer network on an extensive
unlabeled data [24]. In [25], it can be found
an implementation and examples of the use of
a module that fits this architecture trained in
Wikipedia and BookCorpus. Assuming that the
entries are pre-processed as required by this module
implementation, it returns as output representations
of each token in the input sequence and an entire
grouped representation of the entry.

Attention mechanisms have become an integral part
of sequential modeling in various tasks, allowing
the modeling of dependencies regardless of the
distance between input and output sequences. These
mechanisms are generally used with some RNN[26].
These models use the so-called attention functions,
which are nothing more than a function that can be
described as the mapping of a query and a set of
identifier-value pairs to an output, where the query,
the identifiers, and the values are all vectors. The
output is calculated as the weighted sum of the values,
where the weight of each value is calculated by a
query compatibility function with the corresponding
identifier [26]. In [26], various types of attention
functions, such as “Scaled Dot-Product Attention,”
“Multi-Head Attention,” and “Self- Attention,” are
presented and explained.

A model called “Transformer” [26] is completely
based on the Self-Attention and Multi-Head Attention
models. This model does not use alienated RNNs
or convolutions; it follows an encoder-decoder
architecture completely connected between its
layers. That means that the encoder maps an input
sequence of symbol representations to a continuous
representation. Then, the decoder generates an output
of the symbols for each element at a time [27].

MATERIAL AND METHODS

This section introduces the models proposed to
identify user stories in issue management systems.
For the resolution of the problem presented in this
work, the CRISP-DM methodology was followed
[28]. The main steps of the methodology are listed
below:

Ingeniare. Revista chilena de ingeniería, (2023) 31:29

8

Business understanding. This initial phase focuses
on understanding the problem establishing the data
mining goals and the success criteria.

Data understanding. The data understanding phase
starts with initial data collection and proceeds with
activities to get familiar with the data and to identify
data quality problems.

Data preparation. The data preparation phase
covers all activities to construct the final dataset,
which will be fed into the models.

Modeling. In this phase, various modeling techniques
are selected and applied, and their parameters are
calibrated to optimal values.

Evaluation. Before proceeding to the final
deployment of the model, it is essential to evaluate
the model more thoroughly, reviewing its metrics
and behavior in the real application.

Deployment. This task takes the evaluation results
and concludes a strategy for deployment of the data
mining result(s) into the business.

Data understanding and preparation
The models were trained by taking data from public
sources containing real software development
project problems [29] [30]. These sources contain
positive examples of user stories (sentences in the
format described previously) and negative examples
(erroneous user stories or sentences with a similar
syntaxis to user stories but with a different purpose).
An algorithm was implemented to generate additional
examples by splitting and mixing positive examples

into random parts using the TensorFlow Tokenizer to
obtain a more extensive data set suitable for testing
the models. This implementation is available in [31].
A manual classification work was performed to
differentiate the examples to which each classification
class belonged, thus introducing into the model an
index of human error, given that there was no record
of the previously classified data. The resulting dataset
includes a total of 7997 positive and negative examples,
of which 2618 are positive, as shown in Table 1, and
the remainder are negative, as shown in Table 2.

Therefore, a binary classification problem is presented,
where the issues classified as user stories belong to
the positive class (1) and the rest to the negative class
(0). The entire dataset obtained can be found in [32].

A BRNN-LSTM model for User Story issues
classification
The first model proposed for User Stories
classification is based on an architecture for a
bidirectional LSTM neural network (Figure 6).
The model has a maximum of Word Embeddings
equal to the vocabulary length, with 300 dimensions
each and 125 bidirectional LSTM layers. A dropout
layer was used to prevent overfitting, and a sigmoid
activation function in the output layer.

For the implementation of this model, Python 3
and TensorFlow 2.0.0-rc0 for GPUs were used. The
implemented model is available in [33].

An ELMo-based model for User Story issues
classification
Furthermore, a custom Keras layer for TensorFlow,
whose implementation was taken from [35] and

Table 1.	 Samples of positive examples in the dataset.

No. Issue Class

1
As a Carequality implementer, I want CONNECT to leverage the Carequality framework so I
can exchange with other Carequality participants

1

2
As a Carequality implementer, I want CONNECT to leverage the Carequality framework so I
can exchange with other Carequality participants

1

3 As a CONNECT administrator, I want CONNECT to push audits and events via web services 1

4
As a CONNECT Adopter I need CONNECT to be database independent and support different
databases such as Oracle

1

5
As a CONNECT Adapter, I want to be able to respond to requests and receive responses to requests
asynchronously in addition to synchronously

1

6
As a CONNECT Adapter, I want to be able to respond to requests and receive responses to requests
asynchronously in addition to synchronously

1

Peña, Roldán, Vegetti: Analysis and comparison of deep learning models for user stories identification

9

subsequently integrated and adapted to our model,
was used to build the ELMo-based model using the
ELMo2 module available through the Tensorflow
Hub platform [34]. Besides, a dropout layer was
added to the model to prevent overfitting and a
sigmoid activation function. Figure 7 illustrates
a general view of the sequential model using the
ELMo module.

For this implementation, Tensor Flow 1.14 was
used due to support and compatibility problems
of the module with TensorFlow2.0 and the Tensor
Flow-Hub library [36]. The model implementation
is available in [37].

A BERT-based model for User Story issues
classification
The BERT module bert_uncased_L-12_H-
768_A-12/1, available through the Tensorflow
Hub platform [34], which provides a simple
way to share Tensorflow models, was used to
implement the BERT-based model. We used
Keras with Tensorflow backend to build our
BERT-based model. Before Keras can use the
core TensorFlow model, a customized Keras layer

must be defined to render it in the appropriate
format [38] correctly.

As shown in Figure 8, after the inputs are preprocessed,
the ids for the tokens and their respective masks are
obtained, which fed the BERT layer. Finally, to
avoid overfitting, a dropout layer is placed at the
output of the BERT module, and subsequently, a
sigmoid function is used.

The implementation of this model used Tensor
Flow 1.14 to avoid some compatibility issues with
TensorFlow2.0 and the Tensor Flow-Hub library.
The implemented model is available in [39].

EVALUATION AND DISCUSSION
OF THE RESULTS

In this section, the main results obtained by the
different models are presented, and then a comparison
is made between them. For each model, once the
dataset was loaded, it was randomly divided into
70% for training and 30% for testing using the
function train_test_split from [40]. Also, during
training, the 70% was divided again into 30% for

Table 2.	 Samples of negative examples in the dataset.

No. Issue Class

1 Add enable/disable exchange refresh function to Exchange Manager GUI 0
2 Add details should anchor tag you back to the expanded section that you added from. 0
3 Add JUnit tests for mail classes for Mail package 0

4
i want to take a dataset offline so that i can perform a long running maintenance or migration
procedure

0

5 as a url to social networks so that i can 0
6 as necessary including title dates languages and other facets 0

Figure 6.	 The BRNN-LSTM model.

Ingeniare. Revista chilena de ingeniería, (2023) 31:29

10

Figure 7. The proposed model using ELMo module.

Figure 8.	 The proposed model using BERT module.

validation using the validation_split parameter
available when training TensorFlow models.

Training and validating the models

For the BRNN-LSTM model, an Adam optimizer
with a learning rate of 0.01 and a batch size of 35
was used, as shown in Figure 9 after 15 epochs of
23 seconds each, accuracies of 0.9579 and 0.9624
were achieved in validation and testing, respectively.

In Figure 10, it is analyzed the performance graphs
by accuracy and loss. As it can be observed, there
exist some overfitting, which could lead to missing
classifications.

For validating the automatic generation algorithm,
the same training and validation process was run
for the BRNN-LSTM model using the original
dataset. After that, the F1 score was 0.8796 against
0.9545 for the model trained using the enhanced
dataset, as shown in Figure 11. As can be seen,
the model using the enhanced dataset has a better
score; hence, it was decided to continue the training
and validation of the rest of the models using the
enhanced data set only.

For the ELMo-based model, an SGD optimizer
and a batch size of 35 were used, and after 34
epochs of 23 seconds each, an accuracy of 0.9607
in validation was obtained, as shown in Figure 12.

Peña, Roldán, Vegetti: Analysis and comparison of deep learning models for user stories identification

11

An analysis of the performance of this model shows
a better performance than the previous one without
a relevant overfitting (Figure 13).

On the other hand, for the BERT-based model, an
SGD optimizer and a batch size of 35 were used,
and after 7 epochs of 4 minutes each, an accuracy
of 0.9676 in validation is obtained, as shown in
Figure 14. An analysis of the performance of this
model shows a better performance than the previous
one without relevant overfitting (Figure 15).

Comparison between the models

We evaluated the proposed models using a set of
new issues that do not belong to the training or the

validation datasets (Table 3). The results obtained
by testing the different models are listed in the
column titled “Probability of being a User Story.”
From these results, several observations are made:

The identification of short user stories improves as
the complexity of the applied model increases (the
BRNN-LSTM being the simplest and the BERT-
based the most complex), as observed in the first
example of Table 3.

Considering the User Story 5 example, the
BRNN-LSTM model is not able to recognize this
example as unfavorable. In contrast, others return
a lower probability, ensuring this is not a positive
example.

Figure 9.	 Training of the BRNN-LSTM model.

Figure 10.	Accuracy and Loss analysis of the BRNN-LSTM model.

Figure 12.	Training the ELMo-based model.

Figure 11.	Training BRNN-LSTM model with original vs enhanced dataset.

Ingeniare. Revista chilena de ingeniería, (2023) 31:29

12

Figure 15.	Accuracy and Loss analysis for the BERT-based model.

Figure 14.	Training the BERT-based model.

Table 3.	 Testing new examples in the implemented models.

No. Issue Probability of being a User Story

BRNN-LSTM Elmo-based BERT-based

1 As a developer, I want to implement tests. 0.1088 0.9155 0.9935

2
As a tester, I want to implement tests so i can assure
the softwares quality.

0.9999 0.6258 0.9910

3
as an administrator i want a gui admin for configuration
options.

0.9999 0.9973 0.8623

4
A tester want to implement tests so he can assure the
software quality.

0.0053 0.0038 0.0012

5
I want a developer as much as good tester so I have a
good team.

0.9664 0.1686 0.0151

7
As a IA tester, I want to wrtie with ortografics errors
to test efficiency.

0.9999 0.8843 0.9195

8
An administrator will audit event via the system
administration module.

0.0047 0.0044 0.0021

9
As a developer the default build should take less than
5 minuts.

0.0507 0.0008 0.0166

Figure 13.	Accuracy and Loss analysis for the ELMo-based model.

Peña, Roldán, Vegetti: Analysis and comparison of deep learning models for user stories identification

13

Besides orthographic errors or unknown words in a
user story, all the models can generalize it correctly,
as seen in the User Story 7 example.

After implementing the models and assessing
their results, a comparison can be made. The
metrics considered are the F1-score obtained
during the validation through the library Sklearn
[40], the complexity, the training time (tr-effort),
the syntactic analysis (parsing), and the semantic
analysis (semantic). Table 4 shows the results of
the comparison.

As observed in Table 4, the models obtained similar
values for the validation metrics; however, the most
notable difference lies in the ability to semantically
and syntactically analyze user stories. The BERT-
based model has a slightly superior generalization
capability. Besides, although the BERT-based
model complexity is higher (in terms of the times
and number of training epochs), it can be observed
that there exists an improvement in the parsing and
semantic interpretation. In contrast, the parsing of
issues is similar for the BERT-based and ELMo-
based models.

CONCLUSIONS

In this work, three different neural network models
were implemented to identify user stories in large
volumes of data. From the results obtained using
these models, it was analyzed which is better for
the classification of issues records. Also, it was
concluded that the BERT-based model can analyze
the text syntactically and semantically with higher
accuracy and performance. Future work will involve
improving the dataset used by increasing the number
of cases, finding a better balance between positive
and negative classes, and then retraining the models
to enhance the obtained results. A limitation of the
approach is that a previous loading and extraction
process of issues of any type in an IMS is needed to
have a dataset and then feed the model to extract the

user stories. In other words, some coding knowledge
is still required to use the proposed models.

This work can be the first step to applying other
techniques to analyze user stories within Issues
Management systems. The approach can be embedded
in an IMS tool for automatically categorizing of
incidents as user stories, which would save time
and avoid error occurrences, therefore improving
the quality of the software development project
documentation. Therefore, this proposal allows
performing any study based on user stories and
locating possible requirements or requests for new
functionalities in a large repository, even if the
incidents are not labeled as such.

REFERENCIAS

[1]	 G.G. Lucassen, Understanding User Stories,
Universität Utrecht, Graad van doctor, 2017.
[Online]. Available: http://dspace.library.uu.nl/
handle/1874/356784 (accessed Oct. 2, 2019).

[2]	 C. Henderson, Building Scalable Web Sites,
USA: O’Reilly Media, 2006.

[3]	 F.J. Peña Veitía, “Issues_logs_data_
exploration/data-exploration&user stories
classification.ipynb at master fjpena35226/
issues_logs_data_exploration”. [Online].
Available: https://github.com/fjpena35226/
issues_logs_data_exploration/blob/master/
data-exploration%26user stories classification.
ipynb (accessed Sep. 21, 2020).

[4]	 J. Cabot, J.L.C. Izquierdo, V. Cosentino, and
B. Rolandi, “Exploring the use of labels to
categorize issues in Open-Source Software
projects,” in 2015 IEEE 22nd International
Conference on Software Analysis, Evolution,
and Reengineering, Reengineering (SANER),
Montreal, QC, Canada, 2015, pp. 550-554,
doi: 10.1109/SANER.2015.7081875.

[5]	 K. Herzig, S. Just, and A. Zeller, “It’s not a bug,
it’s a feature: How misclassification impacts
bug prediction,” in 2013 35th International

Table 4. Comparing the models.

Model F1-score complexity tr-effort parsing semantic

BRNN-LSTM 0.946 Low low middle low
ELMo-based 0.949 High high high middle
BERT-based 0.965 High high high high

Ingeniare. Revista chilena de ingeniería, (2023) 31:29

14

Conference on Software Engineering (ICSE),
San Francisco, CA, USA, 2013, pp. 392-401,
doi: 10.1109/ICSE.2013.6606585.

[6]	 F. Thung, D. Lo and L. Jiang, “Automatic
Defect Categorization,” 2012 19th Working
Conference on Reverse Engineering,
Kingston, ON, Canada, 2012, pp. 205-214,
doi: 10.1109/WCRE.2012.30.

[7]	 I. Chawla and S.K. Singh, “An automated
approach for bug categorization using fuzzy
logic,” in ACM International Conference
Proceeding Series, New York, New York, USA:
Association for Computing Machinery, Feb.
2015, pp. 90-99, doi: 10.1145/2723742.2723751.

[8]	 J.M. Alonso-Abad, C. López-Nozal, J. M.
Maudes-Raedo, and R. Marticorena-Sánchez,
“Label prediction on issue tracking systems
using text mining,” Progress in Artificial
Intelligence, vol. 8, no. 3, pp. 325-342, Sep.
2019, doi: 10.1007/s13748-019-00182-2.

[9]	 G. Lucassen, M. Robeer, F. Dalpiaz, J.M.
E. M. van der Werf, and S. Brinkkemper,
“Extracting conceptual models from user
stories with Visual Narrator,” Requir Eng,
vol. 22, no. 3, pp. 339-358, 2017, doi:
10.1007/s00766-017-0270-1.

[10]	 R. Mesquita, A. Jaqueira, C. Agra, M. Lucena,
and F. Alencar, “US2StarTool: Generating i∗
models from user stories,” CEUR Workshop
Proc, vol. 1402, pp. 102-108, 2015.

[11]	 Y. Wautelet, S.Heng, D. Hintea, M. Kolp, and
S. Poelmans, “Bridging User Story Sets with
the Use Case Model,” in ER 2016 workshops,
S. Link and J.C. Trujillo, Eds., 2016, pp. 127-
138, doi: 10.1007/978-3-319-47717-6 11.

[12]	 F. Gilson, M. Galster, and F. Georis,
“Extracting Quality Attributes from User
Stories for Early Architecture Decision
Making,” 2019 IEEE International Conference
on Software Architecture-Companion, ICSA-C
2019, 2019, pp. 129-136, doi: 10.1109/
ICSA-C.2019.00031.

[13]	 Y. Wautelet, S. Heng, M. Kolp, and I. Mirbel,
“Unifying and Extending User Story Models,”
in Advanced Information Systems Engineering.
CAiSE 2014, Lecture Notes in Computer
Science, M. Jarke. et al., Eds. vol. 8484,
doi: 10.1007/978-3-319-07881-6_15.

[14]	 D.W. Otter, J.R. Medina, and I. Mirbel, “A
Survey of the Usages of Deep Learning
for Natural Language Processing,” IEEE

Trans Neural Netw Learn Syst, vol. 32,
no. 2, pp. 604-624, Feb. 2021, doi: 10.1109/
TNNLS.2020.2979670.

[15]	 M. Sahlgren, “A brief history of word embeddings
(and some clarifications) | LinkedIn”. [Online].
Available: https://www.linkedin.com/pulse/
brief-history-word-embeddings-some-
clarifications-magnus-sahlgren/ (accessed
Oct. 29, 2019).

[16]	 A. Yadav and D.K. Vishwakarma, “Sentiment
analysis using deep learning architectures:
a review,” Artif Intell Rev, vol. 53, no. 6,
pp. 4335-4385, Aug. 2020, doi: 10.1007/
S10462-019-09794-5/METRICS.

[17]	 W. Xia, W. Zhu, B. Liao, M. Chen, L. Cai, and
L. Huang, “Novel architecture for long short-
term memory used in question classification,”
Neurocomputing, vol. 299, pp. 20-31, 2018,
doi: 10.1016/j.neucom.2018.03.020.

[18]	 M. Schuster and K.K. Paliwal, “Bidirectional
recurrent neural networks,” IEEE Transactions
on Signal Processing, vol. 45, no. 11,
pp. 2673-2681, 1997, doi: 10.1109/78.650093.

[19]	 A. Graves, S. Fernández, and J. Schmidhuber,
“Bidirectional LSTM networks for improved
phoneme classification and recognition,”
Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics),
vol. 3697, pp. 799-804, 2005.

[20]	 Y.P. Lin and T.P. Jung, “Improving EEG-
based emotion classification using conditional
transfer learning,” Front Hum Neurosci,
vol. 11, 2017, Art no. 334, doi: 10.3389/
fnhum.2017.00334.

[21]	 M. Peters et al., “Deep Contextualized Word
Representations,” in NAACL. Association for
Computational Linguistics (ACL), pp. 2227-
2237, 2018, doi: 10.18653/v1/n18-1202.

[22]	 Tensorflow Hub-Google, “Elmo-Tensorflow
Hub”. [Online]. Available: https://tfhub.dev/
google/elmo/3 (accessed Mar. 31, 2020).

[23]	 J. Devlin, M.W. Chang, K. Lee, and K.
Toutanova, “BERT: Pre-training of deep
bidirectional transformers for language
understanding,” in Proceedings of the 2019
Conference of the North American Chapter
of the Association for Computational
Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), J.
Burstein, C. Doran, and T. Solorio, Eds.

Peña, Roldán, Vegetti: Analysis and comparison of deep learning models for user stories identification

15

2019, pp. 4171-4186, doi: 10.18653/v1/
N19-1423.

[24]	 S. González-López, S. Bethard, F.C.E. Orozco,
and A.P. López-Monroy, “Consumer cynicism
identification for spanish reviews using a
Spanish transformer model”, Procesamiento
del Lenguaje Natural, vol. 66, pp. 111-120,
2021, doi: 10.26342/2021-66-9.

[25]	 Tensorflow Hub - Google, “Bert_uncased
- TensorFlow Hub”. [Online]. Available:
https://tfhub.dev/google/bert_uncased_L-
12_H-768_A-12/1 (accessed May. 25, 2020).

[26]	 A. Vaswani et al., “Attention is All you
Need,” in Advances in Neural Information
Processing Systems, I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S.
Vishwanathan, and R. Garnett, Eds., Nov. 3,
2017, doi:10.48550/arXiv.1706.03762.

[27]	 G. Klein, Y. Kim, Y. Deng, J. Senellart, and A.
Rush, “OpenNMT: Open-Source Toolkit for
Neural Machine Translation,” in Proceedings
of ACL 2017, System Demonstrations, M.
Bansal and H. Ji, Eds. Vancouver, Canada,
2017, pp. 67-72.

[28]	 P. Chapman et al., “CRISP-DM 1.0: Step-
by-step data mining guide”. 2000. [Online].
Available: https://api.semanticscholar.org/
CorpusID:59777418 (accessed: Oct. 28, 2023).

[29]	 CONNECT, “Navegador de incidencias - Issue
Tracker CONNECT”. [Online]. Available:
https://connectopensource.atlassian.net/is
sues/?jql=orderbycreatedDESC&startInd
ex=50 (accessed Oct. 30, 2019).

[30]	 F. Dalpiazo, “Requirements data sets (user
stories),” Mendeley Data, 2018. [En línea].
Disponible: https://data.mendeley.com/
datasets/7zbk8zsd8y/1

[31]	 F.J. Peña Veitía, “Fjpena35226/augmenting
dataset_userstories”. [Online]. Available:
https://github.com/fjpena35226/augmen
tingdataset_userstories (accessed Oct. 1, 2020).

[32]	 F.J. Peña Veitía, “Identifying User Stories
in Issues records”. [Online]. Available:
https://data.mendeley.com/datasets/
bw9md35c29/1/files/2515d495-62f4-
4b59-a738-4dcdcef03efe/dataSetUser
StoriesRecognition.csv?dl=1 (accessed Jul.
02, 2020).

[33]	 F.J. Peña Veitía, “Fjpena35226/rnn_simplre_
lstm_userstories_recognition”. [Online].
Available: https://github.com/fjpena35226/
rnn_simplre_lstm_userstories_recognition
(accessed Jul. 31, 2020).

[34]	 T. Hub, “TensorFlow Hub”. [Online].
Available: https://www.tensorflow.org/hub
(accessed Oct. 31, 2019).

[35]	 J. Zweig, “Keras-elmo/Elmo Keras.ipynb
at master strongio/keras-elmo”. [Online].
Available: https://github.com/strongio/
keras-elmo/blob/master/Elmo Keras.ipynb
(accessed Oct. 31, 2019).

[36]	 G. Issues, “Using ELMo with TensorFlow
2.0 Issue #412 tensorflow/hub”. [Online].
Available: https://github.com/tensorflow/
hub/issues/412 (accessed Oct. 31, 2019).

[37]	 F.J. Peña Veitía, “Fjpena35226/rnn_ElMo_
userstories_recognition”. [Online]. Available:
https://github.com/fjpena35226/rnn_ElMo_
userstories_recognition (accessed Oct. 31, 2019).

[38]	 J. Zweig, “Keras-bert/keras-bert.ipynb
at master strongio/keras-bert”. [Online].
Available: https://github.com/strongio/keras-
bert/blob/master/keras-bert.ipynb (accessed
Oct. 31, 2019).

[39]	 F.J. Peña Veitía, “Fjpena35226/bert_userstories_
recognition”. [Online]. Available: https://
github.com/fjpena35226/bert_userstories_
recognition (accessed Mar. 24, 2020).

[40]	 F. Pedregosa et al., “Scikit-learn: Machine
Learning in Python,” Journal of Machine
Learning Research, M. Braun, Ed. vol. 12,
no. 85, pp. 2825-2830, 2011.

